Optiflux 1000
Electromagnetic flow sensor in sandwich design

- Lightweight and compact
- Excellent price to performance ratio
- Quick and easy to install
Reliable and cost-effective solution

The flangeless OPTIFLUX 1000 electromagnetic flow sensor is compact and lightweight. The design is robust with the highly chemically resistant PTFE liner.

This device is a cost-effective and reliable solution for a wide range of applications and industries varying from water and wastewater, agriculture, utilities and from fire-fighting to machine building.

Highlights
- Sandwich design
- Compact and ease of installation
- Excellent price to performance ratio
- No moving parts, no maintenance
- Bidirectional flow measurement

Industries and applications
- Machine building - mixing, batching, pump control, dosing and filtration systems
- Energy, HVAC - water flow monitoring
- Water and Waste water - distribution lines and treatment plants
- Effluent treatment plants - measurement of water, chemicals, effluent
- Process industries - measurement of water, chemicals, effluent
- Food and Beverages - measurement of milk, juices, concentrates, water etc.

Measuring Principle – Faraday’s law

An electrically conductive fluid flows inside an electrically insulated pipe through a magnetic field. This magnetic field is generated by a current, flowing through a pair of field coils. Inside the fluid, a voltage U is generated:

$$U = V \cdot K \cdot B \cdot D$$

Where

V = Mean flow velocity

K = Meter constant / correction factor for geometry

B = Magnetic field strength

D = Inner diameter of flowmeter

The signal voltage U is picked up by electrodes and is directly proportional to the mean flow velocity V and thus the flow rate Q. The generated signal voltage is very low.

Signal converter is used to amplify this signal voltage, filter it [separate from noise] and convert it into signals for totaling, recording and processing the output.

1. Voltage (induced voltage is directly proportional to flow velocity)
2. Electrodes
3. Magnetic field
4. Field coils
Technical data

Measuring system

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring principle</td>
<td>Faraday's law of electromagnetic induction</td>
</tr>
<tr>
<td>Application range</td>
<td>Electrically conductive fluids</td>
</tr>
<tr>
<td>Measured value</td>
<td>Volumetric flow and Velocity</td>
</tr>
</tbody>
</table>

Design

<table>
<thead>
<tr>
<th>Features</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Features</td>
<td>Sandwich design</td>
</tr>
<tr>
<td>PTFE liner</td>
<td>Other liners available optionally</td>
</tr>
<tr>
<td>Light weight</td>
<td>Compact design</td>
</tr>
<tr>
<td>Modular construction</td>
<td>The measurement system, consisting of a flow sensor and a signal converter, is available in compact or separate version. More information about the signal converter can be found in the technical data sheet of the signal converter.</td>
</tr>
</tbody>
</table>

| Nominal diameter | 1" 6" / DN 25 DN 150 |
| Measurement range | -12...12 m/s / -40...40 ft/s |

Measuring accuracy

<table>
<thead>
<tr>
<th>Measuring error (with signal converter)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFC 050 converter – DN 25 ... DN 150</td>
<td>±0.5% of mv</td>
</tr>
<tr>
<td>IFC 100 converter – DN 25 ... DN 150</td>
<td>±0.5% of mv</td>
</tr>
<tr>
<td>IFC 300 converter – DN 25 ... DN 150</td>
<td>±0.3% of mv + 1mm/s</td>
</tr>
<tr>
<td>Special calibration</td>
<td>Higher accuracy available on request</td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.1% of mv</td>
</tr>
</tbody>
</table>

Operating conditions

Temperature

| Process temperature | PTFE: -40...+180°C / -40...+356°F for remote version |
| | PTFE: -40...+90°C / -46...+194°F for compact version |

Pressure

Operating pressure	Up to 16 Bar / 230 psi
	Mating flanges: ANSI 150, ANSI 300, PN40, PN16
Pressure loss	Negligible

Chemical properties

Physical condition	Liquids
	Water ≥ 20 µS/cm
	Process fluids ≥ 5 µS/cm
Electrical conductivity	
Permissible gas content	≤ 5% by volume
Permissible solid content	≤ 10% by volume

Installation conditions

Installation	Take care that flow sensor is fully filled
Flow direction	Forward and reverse
Arrow on flow sensor	Indicates positive flow direction
Inlet straight run	≥ 5 DN
Outlet straight run	≥ 2 DN
Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring tube</td>
<td>SS 304</td>
</tr>
<tr>
<td>Liner</td>
<td>PTFE for 1” … 6” / DN 25 … DN 150</td>
</tr>
<tr>
<td>Other liners available on request</td>
<td></td>
</tr>
<tr>
<td>Sensor housing</td>
<td>SS316 PU painted</td>
</tr>
<tr>
<td>Process connection</td>
<td>For installation between ANSI 150, ANSI 300, DIN flanges</td>
</tr>
<tr>
<td>Measuring electrodes</td>
<td>Hastelloy C, SS316, SS316L</td>
</tr>
<tr>
<td>Grounding rings</td>
<td>SS 316</td>
</tr>
<tr>
<td>Optional: SS 316L, Hastelloy C</td>
<td></td>
</tr>
<tr>
<td>Connection box (only for remote versions)</td>
<td>Standard: Die-cast Aluminum PU painted</td>
</tr>
<tr>
<td>Optional: Stainless steel</td>
<td></td>
</tr>
<tr>
<td>Cable entry</td>
<td>M 20 x 1.5, fitted with blind plugs</td>
</tr>
</tbody>
</table>

Electrical connections

<table>
<thead>
<tr>
<th>Component</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal Cable</td>
<td>Only for remote versions</td>
</tr>
<tr>
<td>Type DS</td>
<td>Standard cable: Double shielded</td>
</tr>
<tr>
<td></td>
<td>Standard length: 10 m</td>
</tr>
<tr>
<td></td>
<td>Maximum: 150 m / 495ft (depending on electrical conductivity)</td>
</tr>
</tbody>
</table>

Approvals and Certifications

<table>
<thead>
<tr>
<th>Protection category</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>according to IEC 529/EN 60529</td>
<td>Standard: IP 66 / 67 (NEMA 4 / 4X)</td>
</tr>
<tr>
<td>Optional: IP 68 / NEMA 6P</td>
<td></td>
</tr>
</tbody>
</table>

Dimensions and weights

<table>
<thead>
<tr>
<th>Meter size: 1” / DN25 and 1 ½” / DN40</th>
<th>Meter size: 2” to 6” / DN50 to DN 150</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meter size</td>
<td>E</td>
</tr>
<tr>
<td>DN25</td>
<td>115</td>
</tr>
<tr>
<td>DN40</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use 1 ½”, 2” and 2 ½” flanges to install flowmeter size 1”, 1 ½” and 2” respectively.

Note: The subject flow meters cannot be used as a weight or measures under the Legal Metrology Act.
Specifications subject to changes without prior notice.

KROHNE Marshall Pvt. Ltd.
A36/B14, MDC, Industrial Estate, ‘H’ Block, Pimpri, Pune - 411 018, India.
Tel.: +91-20-27442020
Fax: +91-20-27442040
E-mail: ksales@krohnemarshall.com
www.krohne.in
www.forbesmarshall.com